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Abstract

A wide range of segmentation techniques continues to evolve in the
literature on scene analysis. Many of these approaches have been con-
strained to limited applications or goals. This survey analyzes the
complexities encountered in applying these techniques to color images
of natural scenes involving complex textured objects. It also explores
new ways of using the techniques to overcome some of the problems which
are described. An outline of considerations in the development of a
general image segmentation system which can provide input to a semantic
interpretation process is distributed throughout the paper.

Tn particular, the problems of feature selection and extraction
in images with textural variations are discussed. The approaches to
segmentation are divided into two broad categories, boundary formation
and region formation. The tools for extraction of boundaries involve
spatial differentiation, non-maxima suppression, relaxation processes,
and grouping of local edges into segments. Approaches to region formation
include region growing under local spatial guidance, histograms for
analysis of global feature activity, and finally an integration of the
strengths of each by a spatial analysis of feature activity. A brief
discussion of attempts by others to integrate the segmentation and interpretation
phases is also provided. The discussion is supported by a variety of

experimental results.
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In the design of a general computer vision system for interpreting
images, one must face many of the issues confronting the development of
complex AI systems in general. Image understanding requires the proces-
sing of vast quantities of sensory data, with noise from the sensing
mechanisms as well as non-semantic information obscuring the semantically
significant entities that are to be perceived. One must organize both
processes and knowledge structures in a modular fashion to interact in
a flexible manner (Hanson & Riseman [1976], Arbib & Riseman [1976]).

The complexities in the design and implementation of such systems
typically has led to a decomposition of the preblem into distinct sub-
systems for segmentation and interpretation, often referred to as 'low-

level' and 'high-level' processing, respectively. We view the goal of

I the initial stages of processing in visual systems as segmentation,
a transformation of the data into a partitioned image with parts in a
representation which is more amenable to the semantic processing.
The general problems of segment: tion involve processing arrays of numeric
values representing brightness (and color) in order to extract features
of boundaries and regions over local areas or 'windows'. By a variety
of means this information can be aggregated, labelled with symbolic names

and attributes, and then interfaced to knowledge structures by interpre-

g L

tation processes.

There has been some debate over the degree to which semantic infor-
mation should be employed in the partitioning of an image. The problem

of segmenting scenes with textural variations is rather challenging,
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and it is clear that the context of local data in a picture influences

our interpretation of that data. Then it is reasonable to ask why the
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image should not be processed immediately with knowledge of 'chairs',
'tables', or any other objects expected in the image. This will be

discussed in more detail later in this paper, but it is worthwhile to make

our views on this matter clear now.

A vision system which is to operate in a constrained domain with
constrained goals will be able to use such knowledge to its advantage.
However, this means that the segmentation operations cannot be applied
to a new domain without providing the new knowledge for that domain; in
each case the content, form, and manner of use of the domain-dependent
,vf knowledge must be specified. This also might involve serious computa-
tional considerations depending on the amount of knowledge and its use.
This implies a reconstruction and evaluation of the segmentation system

in each new application. It seems to us that there is a large degree of

non-semantic patterns of sensory visual data which can allow effective,
although not perfect, initial segmentation without recourse to semantics.

A similar view has been expressed by Zucker, Rosenfeld and Davis [1975].

The human visual system can do quite well in partitioning nonsense images,
even when neighboring regions are highly textured.

For these reasons we view the problem of image understanding as one
£ of performing initial segmentation via general procedures, feeding this
low~level output to a high-level system, and then allowing feedback loops
so that the interpretation processes can influence refined segmentation.
This allows semantic information to influence segmentation in a goal
” oriented way without coupling all such knowledge directly into the low-

level processes. In this paper, however, we will look primarily at

computer techniques for a one-way transformation from 'raw' visual input

of static images to a segmented array.
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From this point of view, the segmentation processes provide a compact

description of the location and characteristics of visually distinct

areas of the image. However, the local analyses may generate a great deal
of spurious activity because objecte in images do not appear as uniformly
colored areas (as in cartoon drawings) but rather have natural textural
variations, reflectance, shadows, etc. Thus, the integration of local
processing into globally consistent boundaries and regions is not at

all straightforward.

From a classic AT point of view, this analysis involves an enormous
search space. 1If one adopts the ideal goal of bringing together these
local representations of data into an optimal global representation, one
must immediately face the combinatorics of the problem and the question
of computational efficiency. Global brute force search is quite impossible,
and of course one would not even recognize acceptable solutions without
the application of higher-level processes to each alternative. Humans can
understand images of natural scenes even in the presence of a high degree
of noise and local textural variations. Clearly, the different phases
of processing that are employed must be integrated and techniques to
constrain the alternatives within each are necessary. Interaction between
the analyses of local visual areas can be employed, but there must be
provision for global guidance; not all possible global boundaries can
be considered, but local noise in the formation of a long straight line
should be handled by the global view of the line. 1In this paper we will
examine some of the ways of dealing with these problems.

In the next two sections of the paper, we examine feature extraction,
color, and texture. The main focus of this paper, techniques for boundary
formation and for region formation, are presented in the next two sections,

with a concluding discussion in the last section.




2.  Feature Extraction

2.1 Raw Input and Color

Firstly, then, what is the 'raw' visual input? In an animal, it is
simply the pattern of light (distributed across the spectrum) falling
on the animal's retinas. This pattern changes over time as the animal
moves and the environment changes. In a computer visual system, the
input may be far more restricted. The simplest input is a black-and-white
photograph which provides a two-dimensional map of light intensity in a
| static scene. Such an input can be subject to boundary formation and
texture analysis. In this paper, we shall provide computer techniques
for analyzing a static scene enriched by color. The usual way of
representing a color photograph is by coding it as three arrrays, each
sampling the brightness of the pattern through a different standard
filter. Usually, the peak frequencies of the filters correspond to the
three primary colors of red, green, and blue. This is true of the eye

as well as of the computer: each rod in the retina has peak receptivity

R e

near the frequency of one of the three primary colors.
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Figure 1 depicts a simple house scene viewed through each of the
three fiiters and also averaged into a black and white (B & W) mono-
chromatic image. If one views the blue component (Fig. lc) of the
colored image as a black-and-white photo, then bright regions are those
with a strong blue component. Since white light has all spectral com-
ponents, both blue sky and white clouds may appear indistinguishable in
the blue image. However, the red and greén components of the image will
portray the boundary between sky and clouds:

The color of the sky is actually cyan (greenish blue) which

has a much larger green contributiocn than red.  Consequently the red
component (Fig. la) of the image would show the sky area to be much
darker than the cloud area, while the contrast is not as great in the
green (Fig. 1lb) component. By properly viewing the three images one can
estimate the cglors of other areas, e.g., the roof and unshadowed side
of the house is reddish, the grass is yellowish green (high in green,
moderate red}, the house trim is white (high in all components), etc.

Consequently, even the roughest sense of the color of an object
cannot be determined without looking at all three values. On a dark to
light gray scale from 0 to 63, a red value of 40 could represent:

1) a bure red (1f the other components are (); or

2) yellow (if the green value is 40, and blue is 0); or

3) white (if both green and blue are also 40); etc.




2.2 Hue, Saturation and Intensity

Due to these problems, the raw data is often transformed into a
different coordinate system which is more intuitive to the human user:
hue, saturation and intensity, often referred to in this paper as HSI

features or parameters. The following is a brief discussion of the

‘definition of these features.

The information associated with each point (i,j) can be viewed as
a vector in 3 space, [R(i,j), G(i,j), B(i,j)]. We restrict each element
of the vec;or to the range [0,63]. To help the reader visualize thi?,
we adapt the clear and simple presentation provided by Schacter, Davis
and Rosenfeld [1975], and view this as a vector within the 63 x 63 x 63
cube depicted in Figure 2a.

By viewing the brightness of a point as an average of the three
primary color components, it is clear that the origin [0,0,0] is black
and maximum brightness [63,63,63] is white. We may define a gray scale of
brightness or 'intensity' by

+ R+B4G
&y

This is equivalent to the length of the projection of the vector tR,G,B]
associated with any point upon the diagonal vector shown in Figure 2a.
Thus, points in the color cube get progressively brighter as one moves
from the bottom right to the upper left corners.

Other colors are obtained as one combines the primary colors in different amounts.
The corners of the cclor cube are labelled in Figure 2b with the names of perceived
colors which are formed from the three primary colors. For example, red and green
in equal amounts produce yellow, wheﬁ the blue component is 0. Thus, one can
imagine the right face of the cube in Figure 2b varying across green,

<

yellowish-green, yellow, yellowish-red (orange), and red. A diagonal




Figure 1:

5a

Digitized images of a natural color scene.
(a) Red, (b) Green, and (c) Blue components are shown.
(d) Intensity (or brightness) is an average of the first

three images; subareas A and B will be used in examples later

in the paper.
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line from black to yellow (i.e., red and green components are equal)
Qill represent yellow at different levels of intensityl. Now we
need a way of describing the points inside the cube as well as on the
surface of the cube. The pointé in a plane perpendicular to the gray-
scale vector from black to white are of equal intensity. The largest
such plane within the unit cube is the plane péssing through the cube
at the corners R, G and B, forming the equilateral triangle depicted
in Fig. 2c and 2d. At any other level of intensity this triangle is
smaller. The implication is that there is a smaller range of color
combinations that can be formed as one appr?aches minimum and maximum
| intensity (black and white).

The color triangle of Fig. 2c can now be used to describe two other
characteristics of color space, hue and saturation, which are independent
of intensity. The intersection of the color triangle with the line between the origin
and any point P in the color cube defines the projection of P onto the color
triangle at'P'i The placement of this point P' is defined by normalizing
the values of R, G and B:

R
R+G+B

P,
8 = R+G+B

i
R+G+B

and b

1

The problem is much more complicated from a psycholcgical view because
our perception of the color yellow is also a function of intensity and

b below some threshold, we might call it another color such as tan, brown,

} blackish-brown, or black. Human perception of color is a very complicated
process and we will not be able to treat this problem in detail. The
reader is referred to Evans [1948]), Cornsweet [1970), Bouma [1971] and
Beck [1975].




—

-~
~

which implies that r + g + b = 1. Since there are only two independent
Variablef, it is convenient to convert the equilateral color triangle into
a right color triangle with the point P' defined by r and g (on the R and
G axes, respectively) as shown in Fig. 2e.

Now one can specify the hue and saturation of point P'. Intuitively,

hue can be thought of as representing the type of color. Saturation is a

e, T Ao 20 B e S
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measure of the richness or purity of the color and is inversely propor-

©

1 tional to the amount of white light diluting the hue., Both of the colors

pink and scarlet may have the same hue, but pink is unsaturated while

Bt~

scarlet is highly saturated. If one represents the center of the color

1 triangle as W (where W is the neutral point representing the projection of

white and all gray levels between white and black), then the extension of
4 the line between W and P' to the perimeter of the triangle describes the
hue of p'; it is denoted by H in Fig. 2e. There is a one-one mapping
; between points on the perimeter of the colo; traingle and the angular

orientation & with respect to an arbitrary reference point, in this

.

case R. Thus, hue can be represented as an angle € with red as 0°,

- green as 120°, and blue as 240°.

Saturation of P' is computed as a percentage of the distance of P'
from W to the perimeter point H:

R | ¢ . 7=l

|A-w]

i 1f P 1= anywhere on the perimeter of the color triangle, then it has a

gaturation of 100% while the point W (white) is completely diluted and has
©

el

} a saturation of 07.

The HSI features that we have defined are not entirely independent.

)
,' 5
[: ! If one examines the diagrams in Flg. 2, one can see that totally saturated
& !
f

bt s o an




Ta

Figure 2: Transformation of the raw data (R,G,B) into parameters of
hue, saturation, and intensity (H,S,I).
, (a) The color cube and (b) the names of colors at the corners.
(¢c) Formation of the color triangle. (d) Projection of a point
p' on the color triangle. (e) Only two parameters of (r,g,b)

are independent, producing the right color triangle; H and

S are shown in this representation.
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yellow, cyan or magenta can have an intensity twice as great as the highest intensity
ged, blue or green which still remains totally saturated. Certain colors may only be 1
perceived within a range of one of the parameters; e.g., yellow is seen as brown only
when the intensity is low. Thus, if a mapping from HSI into the symbolic color names

is desired, one must take into account dependencies between the HSI parameters. For
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other treatments of color see Tenenbaum et al. [1974] and Sloan and Bajcsy [1975].

Recently Kender [1976] has addressed a problem that some have known about, but has
not been discussed in the literature. In the transformation to normalized components
or HS1, there are points of instability where arbitrarily small changes in R, G, B
will produce large differences in the transformed components; e.g., near point W,
small changes in the raw components can cause very large changes in hue and satura-
tion. Kender's treatment is a very thorough numerical analysis of the computation
and use of color, but is beyond the scope of this paper.

Most of the information with respect to boundaries seems to be visible in the

B & W intensity array of Fig. 1d. Thus, one can avoid the problems of color if one
is willing to risk the disappearance of boundaries between areas of distinct color
but similar intensity. We believe that color information is extremely useful for
interpretation and despite the potential problems will continue to refer to the HSI
features throughout this paper.

2.3 Extracting Other Features Over Windows of Variable Size

Themajor complexity that arises in segmentation is that the areas to be partitioned
still are usually not invariant across the primitive parameters of hue, saturation,
and intensity (HSI). These problems are intertwined in the complexities of texture
which will be treated later in this paper. What we now stress is that even when
scene analysis works with static color input, the features upon which segmentation
algorithms operate need not be restricted to the HSI values associated with image
points. For example, an algorithm for boundary detection may only produce the

correct results if it operates on some of the average HSI parameters computed
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across a local window of the right size; the proper boundary may only be
obvious to local operators after some degree of blurring (which provides a
more global viewpoint). Thus, one is faced with analyzing features of local
windows of differing sizes as well as of individual points at the resclution
level of the image.

Once the constraints on what constitutes a feature are relaxed in
this manner, a huge class of possibly important properties becomes
available. The meaningful feature might actually be the variance of a
property over a local area, not just the average of that property. This
provides a measure of invariance or homogeneity of a given property.

If texture elements are extracted as atomic areas which are homogene;us

in one or more of the HSI parameters, then the shape, size, and orienta-
tion of these areas might be the crucial property forming the cohesiveness
of the perceived region. Although we shall not attempt to discuss the
extent of the many efforts at feature extraction, properties for which
computational procedures have been developed include: average of an

area (blurring), average edge per unit area (spatial differentiation and
then élurring), average orientation of local edges and average spot size of
uniform contiguous area. All of these techniques have been carefully
explored by Rosenfeld's group (Rosenfeld et al. [1970,71,72]) and are
treated by Rosenfeld and Kak [1976]. Bajcsy [1973] has used frequency
distribution in the Fourier domain in the analysis of texture gradients.

The computational games that are available for constructing more
complex features by combining these techniques seem endless. Let us
consider a sequence of operators to determine the orientation of line
elements as the textural property characterizing a region. One might
first compute a series of directional derivatives of the image in color

space to determine the strength of color differences at various orientations;
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;hen,in a blurring process, average these values over a local window of
some sizz to delimit the areas which contain the lines (i.e., average edge/
unit area); and finally differentiate these values for each orientation.
The result at a particular poiﬂt represents the strength of a boundary
setween areas on either side of it, where the values of these areas are
based on the property of average strength of edges in the particular orien-

tation. If the first two steps are replaced by a function which computes

the size of atomic areas and then averages these sizes, the differentiation

might discriminate between textures of different coarseness.

The important point to remember is that many of the algorithms giscus-
sed can work upon any array of extracted features, not just the simple
examples presented. The problem is further complicated by the choice of
applying algorithms to vectors of parameters. A spatial differentiation
operator might be applied to the intensity array of a static scene to find
large changes in brightness or to all three of the RGB or HSI parameters as a
three-dimensional vector. The metric is often defined in one-dimensional
and three-dimensional space, but in general can be applied in n-dimensional
space (if n features have been extracted).

Given the state-of-the-art in scene analysis, one is faced with a
combinatoric explosion of alternatives--experience has not yet provided
answers to this problem. It is probable that working systems will require
the ability to determine dynamically the proper size and membership of the

subset of features employed by the algorithms. It must be stressed that many

scene analysis systems will be tailored for specific applications--be they

assembly lines, cardiovascular data, chromosome analysis or satelite imagery.

Much of the success of such a system will depend on the judicious choice of

. those local features most likely to speed up the segmentation of the res-

tricted class of images presented by the problem domain.
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3. Segmentation and Texture

. 3 Se tati
3.1 Goals of Segmentation

We shall distinguish two main approaches to the segmentation of
natural scenes:

a) Boundary Formation - finding the boundaries which delimit a

region; and

b) Region Formation - analyzing properties of areas to merge or

split them into regions.
The goals of these two types of analysis are equivalent--they both form
a partition of the scene into regions and boundaries. They both must
employ some type of grouping, clustering, o; binding of local areas/edges
together. But the focus of the first is upon differences (discontinuity)
in properties while the second is upon similarities of properties. It is
quite possible that specific examples of these approaches could prod;ce
consistent or even isomorphic results. Placements of boundaries in one
tepreéentatipn might be e;actly between the regions formed in another
representation. However, in practice algorithms which operate upon
arrays of numbers representing complex visual information end up taking
many different forms in dealing with the problems to be described.
The dataare often manipulated differently depending on whether one tries
to form lines or extract properties of areas. A scheme which is tracking
edges would be able to use the expected straightness of a boundary during
the processing, while the region approach might collect distributed
characteristics of widely separated local areas.
A powerful scene analysis system will make cooperative use of
several such processes in handling all but the most sharply differentiated

of regions (Arbib and Riseman [1976]).
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Before we discuss particular segmentation techniques, let us look
‘ again at the scene depicted in Figure 1 and note distinguishing characteris-
tics of the parts of the image that we would hope to extract as regions.
The sky and clouds are relatively distinct homogeneous regions. It turns
out to be easy to segment the main area of sky from the rest of the scene
on the basis of intensity. The grass, only slightly more difficult since
it has arather homogeneous fine texture, becomes distinct from the

surrounding areas on the basis of 'average' hue or intensity in a blurring

process. 0{ course the area in shadow is separated sharply from the rest

’ of the grass on the basis of intensity, but it turns out that there is only
a slight shift in huel. This means that there is information available
during segmentation either to form the shadowed grass area separately or to
bind it to the unshaded grass area. In these examples, it appears

that a conservative strategy which forms separate regions might be better since
there is information available to merge the regions with more confidence later
under semantic guidance. 1If these regions are merged immediately, then problems

of backtracking must be faced. The primitive regions which have been formed will
need to be examined later to see whether they should be partitioned in an alternate

way.

The more difficult areas in the scene of Figure 1 are the maze of textural
variations in the tree, the smaller areas of detail which are not clearly defined

in the house and shrubs, and the areas running off into shadows. The left window

In general, one cannot expect the hue of a shadowed area to remain un-
changed. 1In fact if the light is reduced significantly, the hue will
be quite prone to error (Kender [1976]) as it approaches black through
the lower 1ntensities.'

I~
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area is partly occluded by the leaves and branches, so that the distinct portions
of the window trim and panes do not form areas which are easy to join together
and interpret in the absence of context. This problem in the windowarea is
compounded by reflections and shadows, e.g., the light areas of the window pane in the
intensity image of Figure 1ld are blue reflections from the sky.

One' can now appreciate the difficulty of purely low-level formation of
a single region covering the whole tree--both the area of tree with sky
showing through, as well as thé area of tree with obscured house in the
background. The background textural elements are quite different in these
two areas, yet there are common textural qualities which form one part
of this macrotexture (the leaves and branches) in each case. This, and
the fact that texture elements in the two areas are connected, are c;ucial

clues which can be used to hypothesize the joining of these two regions.1

3.2 Problems and Goals in Processing Texture

94
The major problem for all segmentation techniques is texture.’

We use the term texture rather loosely to encompass the variations in
the visual properties of objects/ surfaces/regions, including the texture induced

by reflections from an irregular surface (e.g., highlights in the crown

l()ncc again, cooperation of high-level processes which know something about
background areas showing through objects can be used to remove any remain-
ing ambiguity. This reiterates the importance of our observation that high-
level systems ought to affect segmentation at some point in the processing.

_’eru we are referring to the primary difficulty in partitioning a scene into
distinct visaal components, not the major goal of determining the semantic
relationships between the pictorial components. Later, we briefly discuss
some attenmpts to integrate semantics with the segmentation process.
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of a tree) and by occlusion of the light source (e.g., shadows in the
crown of the tree due to branches blocking the light source). The areas
to be partitioned are rarely uniform in any of the simple parameters of
hue, saturation and intensity.

Segmentation processes are always faced with the difficulty of dis-
tinguishing between a region covered by texture elements and the texture
element itself; the system might be mistakenly focussing upon the internal
structure of a region. The proper area varies as a function of resolution,
focus of attention, and goal orientation--is one attempting to bound the
leaf, the branch, the clump of leaves, the tree from other trees?

Many studies have been conducted on images containing at most two
textures or the simpler problem of classifying an image of a single
texture. The problems that appear when one requires a single process
to deal with arbitrary texture types in regions of varying size, quality,
and place&ent have not been explored in the literature. Textures can
occur as a recursive embedding of texture types to make the task even more
difficulz. Faced with a combinatoric explosion of possibilities, research-
ers have correctly chosen to deal with restricted classes of textures.
However, the set of tools that have been developed might become more
effective when a system can employ them in some general but structured

manner. It appears that the time is ripe for an integrative attack upon
the complexitié% of visual texture. :
There are three common goals in texture analysis:

a) classification of texture into a set of categories;

b) description of texture in terms of primitive properties; and

¢) segmentation of texture.
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[n the first two cases, one usually assumes that the given sample is an
example of a single texture. Because this is not true in the third case,
techniques for categorization of a single given texture or formation of
its description are not sufficient for the determination of a boundary

between two areas (of unknown sizes and shapes) but with distinct textures.

3.3 Hierarchical Approaches to Texture Analysis

One of the main problems in segmentation of textured regions is
that the textural feature whose difference is to characterize the boundary
may need to be extracted over a local area of unknown size and shape.
If the information is sampled over areas that are not large with respect

to texture elements or variations, then one cannot expect these local

analyses to provide feature values that are invariant across the textured
region. Consequently, it is desirable to extract the textural information
over as large an area as possible. However, this leads to the 'window
problem'--one cannot be sure of when the window area over which the feature
is extracted is entirely placed inside a region or when it is extracting
a 'mutant' value (i.e., confusing a mixture of two textures as a single
new texture) because it overlaps regions.

A general segmentation system will need the ability to extract such
information over varying window sizes. The selection of the proper
size for the 'receptive field' must surely be a dynamic decision (and

sometimes could be provided by feedback from the interpretive process).

l'l‘his problem is related to the 'mixed pixel' problem. When an image is
first scanned, the pixel could be on the boundary between distinct visual
areas. This would produce a value between the values which would be
produced for pixels entirely to the two sides of the boundary.
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One can structure the system to analyze sets of increasing window sizes

n I . . = - §
(e.g.s 2 % 2 n=1,2,...) in some hierarchical manner (Rosenfeld and

,
Thurston [1971], Marr (1975]) so that the correct size is sure to be
included. One then must deal with the problem of automatically selecting
the relevant data or maintaining all of it in some multi-level data structure.
Although the problems become quite trickv, they do not seem insurmountable;
however, such systems structures are still not yet understood very well.

'he hierarchical processing cone structure (Hanson and Riseman
[1974]) might allow an integrated attack upon these problems. Extraction
of features over varying size windows is implicit in the design of the
system. The processing cone is a simulation of a parallel array of micro-
computers that is hierarchically organized into layers of decreasing

: 2 2 2 2

resolution (2567, 1287, 647,..., 17). Sequences of operations allow
full resolution image data to be transformed, compressed in amount,
and stored at higher levels of the cone as coarse resolution features
of subareas below. This allows both local and global features to be
available simultaneously. Coarse descriptions of major areas might be
utilized to guide the formation of more refined representations by merging
atomic areas at lower levels. 1In this way the cone allows the system to
work at both levels of description, either independently or dependently,
but finally with the goal of bringing the local and global descriptions
together.

An interesting approach to the recursive embedding of texture
characteristics has recently been suggested by Ehrich and Foith [1975, 1976].

A versatile data structure for extracting the relationships between intensity

peaks and valleys of a one-dimensional scan line, called a 'relational tree',
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has been developed. The description of peaks and subpeaks (which could
represent microtextures within a macrotexture) in terms of their width

and relative heights can be extracted from the waveform rather simply.

The relational tree captures structural information in a hierarchical
fashion; fine texture appears as 'frontier peaks' embedded in coarse (wide)
peaks representing more global textural characteristics. The two-dimen-
sional case becomes somewhat more complicated since the structure of

distinct scan lines in the same or different orientations must be

correlated. The approach appears to be quite powerful for classification

and description, and bears promise for applications to segmentation.

3.4 First- and Higher-Order Statistics

One approach to texture description uses first- and higher-order
statistics of (monochromatic) scene elements (Julesz [1975]). The first-order
statistic is simply the average gray level of an area; and differences in this parameter
have been widely émployed in previous work. The computation of the second-
order statistic for an area requires the determination of the likelihood
of finding gray levels i and 3 for pairs of polnts as a function both of
‘the length and orientation of a line between them. Third-order statistics

are extracted as a function of the relationships between three-tuples of

points.

The information in second-order statistics is precisely the data
contained in the 'gray level adjacency' matrices which have been studied
by Haralick [1973] and Rosenfeld & Troy [1970]. For a given length and

orientation, a square matrix of the co-occurrcnces of gray level i with




gray level j in the defined relationships must be constructed. This
technique has been used effectively for classiflcation of texture samples
by transforming each matrix of values into a scalar Qalue by computing
features such as the angular second moment about the diagonal (ASMD).

It is interesting to note that the ASMD can be computed locally in parallel

using little intermediate storage in the procce:ising cones (Hanson & Riseman [1974]).

-

In a series of interesting experiments, Julesz et al. [1973] and Julesz [1975]
demonstrated that two textures with identical first- and second-order
statistics but different third-order statistics cannot be spontaneously
discriminated by a human observer, while differences in first- or second-
order statistics generally allow spontaneous discrimination. They showed
that textures could be constructed with these characteristics by performing
simple transformations of the texture elementl. This would imply that if
the first- ;nd second-order statistics were extracted from a texture:
these often could be used to determine boundaries of the textured area.
Unfortunately, use of second-order statistics is not a computationally
viable approach. For purposes of segmentation, the améunt of data that would
have to be collected to determine similarity or differences of general second-order
statistics of unknown areas of arbitrary size, shape, and placement is
an enormous data overload. Thus, segmentation based on extracting a full
range of second-order statistics seems doomed to failure. However, the use
of selected features dependent only on second-order statistics could prove

quite fruitful.

1 X
Tt should be noted that this study was constrained to black and white
binary images. Although the extrapolation to more general scenes is
reasonable, it should be done with caution.
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3

There are many ways to form a description of a scene in terms of
a line drawing. There are several intermediate representations of
boundaries that often are formed prior to obtaining the final representation.
Computation of the strength (and sometimes orientation) of the gradient
of intensity can be obtained via the application of a spatial differentia-
tion operator. The transformed image is composed of independent edges
whose spatial relationships, among other things, can be used to infer
more global entities. Optionally, these edges might be filtered to
remove redundant and/or less important edges. Then, a subset of edges
might be linked into line segments; in some domains these segments might
be restricted to linking edges that either form a straight line or observe
certain constraints on edge orientation. Finally, the line segments
might be grouped together in terms of the standard wavs lines mav come
together at vertices or in terms of more complete boundaries.

Much of the early research in scene analysis was based on techniques
for tracking straight lines (Roberts [1965], Binford & Horn [1971]).
If the objects under consideration were polyhedra, then knowledge about
their vertices could also be employed during or after the formation of
straight line segments (Roberts [1965], Clowes [1971], Huffman [1971],
Shirai [1972], Duda & Hart [1973], Waltz [1975]). It should be evident

that in natural scenes these techniques will be quite limited if utilized

alone. More general nonsemantic procedures for binding local edges into longer
segments are needed. An interesting approach that the reader should be aware of,
but that we will not examine here, involves an understanding of surfaces,

their orfentation, and the light reflected from them (Mackworth [1973], Horn [1975]).
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There are a variety of techniques and control strategies that can be
used to form edge representations. FEdges can be seqeuentially tracked
along points of roughly uniform gradient strength. On the other hand,
edge information can be extracted prior to sequential or parallel binding
of edges into line segments. Colinear edges can produce clusters in
feature space via Hough—like transforms (Duda and Hart [1973]). This
can allow groups of edges with similar properties to be globally analyzed
and provide local direction to the control of boundary formation
(0'Gorman and Clowes [1973], Nevatia [1975], Shapiro [1975], Wechsler
and Sklansky [1975]). The latter approaches bear similarity to techniques
for region analysis presented later in this paper, and we hope the reader
can extrapolate their potential by considering the general utility of
global feature analysis in forming regions.

One cannot expect a low-level system to directly provide all final
boundary representations which might be meaningfully interpreted by a
semantic processor. This search space is enormous and constraints upon
the final representation are almost always embedded in the techniques
and control strategies. Sometimes in cases of uncertainty the goal of
forming a single final representation can be relaxed, and the determination
of a consistent representation can be delayed for other processes which

utilize different types of knowledge. Thus, we will limit ourselves to

examining variations on two approaches to the early stages of finding lines.

A survey on edge detection techniques by Davis [1974] focusses upon other
issues and approaches, providing a nice complement to the treatment in

this paper.
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4.1 Spatial Differentiation

As we have stated, the usual first step in computing boundaries is
the application of a spatial differentiation operator (often defined as
an edge mask or template) to transform the original image into one with
edges highlighted. Although many such operators have been suggested
(Hueckel [1973], Bullock [1974], Fram and Deutsch [1975], McKee and
Agparwal [1975], Marr {1975]), one that combines low complexity with
high reliability is an operator (Kirsch [1971]) computed on the local

window shown in Figure 3a as follows. Let

|
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|
|
|
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where the indices are computed modulo 8; then let
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and D(X) = {1i|such that M, is max}.

S(X) = Max M 5

i
This gives, at every point X, estimates of the gradient strength S(X)

and gradient direction D(X) (quantized to 45° intervals). Later we will

show that it is useful to save the sign of the gradient; this will tell us

the sides that are light and dark as we move across an edge of a given contrast.
If X 4s within a uniform area, S(X) = 0 and orientation of an

edge is meaningless, whereas D(X) 1is defined, but not necessarily unique,

in all othéf cases. Actually D(X) only encodes four unique orient;tions.

For each orientation, though, information is available as to which side

of point X is the best fit of the edge; an example of the two placements

of a vertical boundary is shown in Fig. 3b.

e

4.2 Suppression of Redundant Data

A disadvantage of most spatial differencing operators is that multiple
indications of the same line can be produced. The raw digitized data
sometimes introduces a gradient of brightness which is not a step function
when one is expected. In the house scene of Figure 1d, the sharp boundary
between sky (intensity = 52) and roof (intensity = 33) actually has one
intermediate row of transition values (intensity = 46). This problem is
related to the placement and size of the scanning point which might over-
lap the areas (the problemof "mixed pixels™). Inmany cases there is a ramp function
in the data because of shadowing and highlights. Thus, many different window placements
will redundantly detect a boundary, whereas the goal is to find a single line
which best separates the two areas.

In the case of the specific operator we have introduced, an additional

problem of multiple representations of the same boundary occurs. If an
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A spatial differentiation operator.

(a) The strength S(X) and the orientation D(X) of the pradient
at X. (b) Placement of edge with respect to X. (c) Edges

which are logically equivalent can be formed at ad jacent points.
(d) Non-maxima suppression could cause fragmentation. (e) Shifting
edges can standardize their location. (f) Directions for non-maxima

suppression of edges. (g) Suppressionoperates only for edges with the

same sign of the gradient so that one pixel wide regions can be

detected.
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edge occurs on one side of point X, the edge will be detected when the

3 x 3 window is centered on some of the points adjacent to X. A simple
case is depicted in Figure 3c where a vertical line is detected as
equivalent adjacent boundaries with equal strength and orientation. Any
single point appears in nine different window placements, and any pair

of adjacent points appears in six different window placements. There is

a confusing overlap of edge analysis. 1In areas to either side of an edge
where there is same'(possib]y minor) variation, the strengths (and even
the orientations) of the adjacent edges may not be identical. Clearly it
is desirable to have only a single indication of a boundary, and techniques
for cleaning up this information are called for. However, as redundant

and weaker edges are removed, the condition of Figure 3(d) must be avoided;
the suppression of local edges should not iead to global fragmentation of

a line. Two operations will be employed to enhance the meaningful infor-
mation: removal of logically equivalent edges and suppression of non-
maximum strength edges.

The representation can be simplified by adopting a standard position
for edges at a given orientation, thereby eliminating separate indications
of logically equivalent edge positions. Currently, a pair of parallel edges at adjacent
pixels can represent a variety of situations; edges which are two pixels apart (and pro-
bably distinct), edges one pixel apart, or edges actually in the same position. By
adopting a general convention of shifting edges, pairs of adjacent boundaries
can be collapsed into a single representative in a consistent manner.

The standard positions that we have selected for the four orientations of
our operator are shown in Figure 3(e). FEach of the four orientations
associated with a pixel now has a fixed position relative to the pixel:

an edge can only appear in the north to southeast semicircle about a pixel.




The edges in non-standard position can be uniquely shifted to the pixel
which has that edge in a logically equivalent, but standard, position.
The neighboring edges which could shift into a single pixel are also
shown in Figure 3(e). 1In the end there are still 8 edge values competing
at four unique locations with the maximum surviving. This could be
computed directly at the first application of the edge masks and allow
the 8 possibilities to compete directly rather than be distributed among
5 pixels (and of course competing with many edges in other positions)
before their results are collected into the single pixel.

For many edge operators suggested in the literature, suppression
techniques are limited (or noisy) because information which encodes
the placement of the edge with respect to the pixel is not available.
The suppression schemes must focus upon the strength and ovientation of
these boundaries in order to clean up the edge image. Various thinning
and smoothing techniques have been suggested. Rather than review this
body of literature, we will examine only the techniques for suppressing
non-maxima (Rosenfeld & Thurston [1971], Haves et al. [1974]) of edces and
spots. They seem to be directed towards the heart of the problem--a local
analysis which retains a good fit of an edge and suppresses redundant data.l

Suppression can take place by having each local edge examine the
strength and orientation of the edges in its neighborhood. It will

be suppressed by indications of parallel (or possibly, near parallel)

lThis process can actually proceed prior to grouping local edges into a
more global line. However, a single straight line which is globally
the best fit might be useful in directing the local analysis and is an
argument for delaying such local suppression.
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lines of greater strength nearby. The simplest heuristic scheme given our
edge representation is portrayed in Figure 3(f) where an cdge at some orien-

tation can be suppressed by a stronger parallel edge which is adjacent

in a direction perpendicular to the orientation of the first; this means
that for each edge, we must examine the values of exactly two of its
neighbors. There are many other heuristics that can be employed as a
function of strength and orientation; e.g., edges at 45° angles to each
other might also activate suppression, or can require a different thres-
hold factor of relative strength before suppression will succeed.

Finally, there is a problem with this suppression scheme in that one
pixel wide regions will produce parallel edges which would suppress each
other. Here we can employ the sign of the gradient to discriminate between
distinct boundaries as depicted in the example of Figure 3(g). Only
parallel edges having the same gradient sign can be multiple instances
of the same edge; suppression will not take place otherwise.

Figure 4 shows a differentiated portion of subimage A in Figure ld
(the diagonal roof and door area in the house); Figure 4a and 4b represent
S(x) and D(x) before suppression. Note that in Figure 4a S(x) has been
scaled by a constant factor, and the sign of the gradient has been included
to guide the later stages of suppression. For simplicity the four orienta-
tions of edges are represented graphically in Figure 4b, even though this
leaves ambiguous the exact position of each edge in the diagram. 1In
Figures 4c and 4d, the edges have been moved to standard positions so
that their position relative to the pixel is between north and (moving
to the vight) southeast. Now adjacency and contact of boundaries is

clearer.
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Figures 4e and 4f show the results of first suppressing non-maxima and then
thresholding out weak edges; the thresholding is carried out by computing mean
and variance of non-zero S(x) and removing edges whose strength is below
u + ko (here k = -.25). Note the presence of the one-pixel-wide light vertical
region in the bottom center of the image. The important boundaries stand out
clearly but there are still some spurious and redundant edges along some boundaries
or at vertices. These edges are a result of the complexities introduced by many
of the edge formation windows overlapping a boundary in various ways.

Many of

them can be removed by using a suppression pass that is slightly more sophisticated.

4.3 Relaxation Processes for Boundary Formation

All of the preceding considerations might be generalized and embodied in

process of competition and cooperation within the parallel 'relaxation' procedurc

tormulated by Rosenfeld, Hummel & Zucker [1976]1; using this approach there has been an
exciting range of applications fromboundary analysis (Zucker, Hummel & Rosenfeld [1975],
Vanderbrug [1975]) to template matching (Davis & Rosenfeld [1976]). This approach
of distributed computation overlaps earlier ideas including the spring-loaded templates
to flexibly map parts into a whole (Fischler and Elschlager [1973]), "constraint satisfaction"
applied to labelling vertices of polyhedra with shadows (Waltz [1975]), and to the formation
ot a consistent set of labels for the identities of regions by Tenenbaum and Barrow [19761.
Here we will briefly review the general idea while applving these ideas of
distributed computation to boundary formation. This approach can embody not only
nonmaxima edge suppression but also edge fitting and binding. The advantapge of the
relaxation techniques is that likelihoods of all orientations of each adjacent point
can contribute to the label assigned to a given point, not just the 'best' choice fo
adjacent elements.  Whereas in the previous algorithms the strengths of edges at
nonoptimal orientations are thrown away, they now prove very useful. Thus, a

break in a long horizontal line mipht be repaired automatically by the context. We

present our own variant to the approach of Zucker et al. [1975].




Figure 4:

An example of processing local edges.

(a)-(b) The strength and orientation of edges produced by ﬁ
applying the operator of Figure 3 to subimage A in Figure 1(d).

The sign of the gradient is retained to show the relative brightness
on each side of an edge. (c)-(d) Removal of logically equivalent
edges by standardization of the position of edges with respect to

the pixels they separate. (e)-(f) Suppression of non-maxima edges

and thresholdiug edges whose strength is below & = 11 -
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Assume we have a set of elements A = {a ,...,an} and a set of

1
labels A = (AI,...,Am},where each label represents a possible inter-
pretation for each of the elements. In this example domain the elements
are the image points and the label set consists of edge orientations,

with the null label used to represent the absence of an edge. A labelling
p = (p‘,...,pn) is a sequence of probability vectors Pyt A — [0,1]

with pi(Ak) being the probability of the hypothesis that Ak is the
correct label for a; - Shortly we will show how our spatial differentia-

tion operator can be used to provide initial estimates of these values.

The relaxation process involves an iterated updating of these pro-
babilities in an attempt to move P towards a globally correct labelling.

This is achieved by updating the value of each pi(xk) on the basis of

the information in its local "neighborhood". Thus, if ai is in N(ai), the

neighborhood of a;s then the probability of label Xk at a, will be increased

(decreased) by label XQ at aj if the labels are compatible (incompatible). The

effect of this change on pi(xk) will be weighted by pi(lg), the likelihood of

the influencing hypothesis. Thus, the belief in each interpretation can be
strongly influenced by its context, leading to competition and cooperation between
alternative interpretations of elements in a common neighborhood.

1 Now we only need to define the compatibility functions which specify

b the relationships between labels. To some extent this allows the semantics

of the domain to be employed via propagation of local influences in arriving
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at a global interpretation. We define the compatibility function between

ay and a, as

]

r Ax A— [-1,1]

1j°
such that rij(xk.xz) >0 if Ak and }p are compatible;

< 0 1f X, and AE are incompatible;

k

=0 41if A, and \E are independent.

k
Here we use the term compatible in the sense of the phrase "lends support
to". For edge labelling the compatibility of edge orientations must capture
both the types (orientation) of edges as well as their spatial relationship.
Finally, we have the basic idea of updating the change in pi(Ak)
as
bp O = 1 " SO £y Qyerdpy(hy) for 1 =1,...,n

jeN@a) ' e=1
and k

]

| PR

where (ll] is a welghting of the influence of the varlous ”j upon .'11.

Let us denote the probability of a label )y after the tth iteration as

pj(t)(Ak). Since Py + Ap1 can become negative for a label with strong

negative evidence from its context, the updating will be nonlinear as

follows

(

t) (t)
\ - 3 A
( k> P, (A 11 + Ap,

1
P-([+ ; (A )]

i k

with /\pi remaining in the interval from -1 to +1.
We now modify the equation to normalize the updated values across k = .,...,m

in order to maintain a probability vector

(t

(E+L) P )(‘k)(| +,'\|)i(l)(k))
P, (Ak) e _,(t)_,_-_ &l )
])‘[Pl ()\k)(l - ."spi

(L)(K))l

Ihis updating process can be iterated some number of times, converging
upon a locally consistent interpretation which hopefully is a globally
acceptable interpretation. Some results on the convergence of this process

are provided by Zucker, Krishnamurty and Hoar [1976].
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4.4 Applying Relaxation to an Inter-Pixel Edge Representation

The ideas of the last section will be illustrated in a specific
example. For this treatment we choose a different representation of
edges among the pixels. Using the differentiation operator presented
in the previous sections, the set of possible edges that can be associated
with a pixel are shown in Figure 5(a); this would leave us with 5 possible

labels at each point, LINEO°, LINE45°, LINE90®, LINE135°, NULL (no line).

Here we simplify this representation by only allowing horizontal

and vertical edges to be placed in the image between

pairs of adjacent
L | points as in Figure 5(b). Rather than associating edges with pixels,
we have an inter-pixel edge representation with the location and orienta-
tion of edges represented at a local level more naturally. This type
of representation has some desirable characteristics and has been used
elsewhere (Brice and Fenema [1970], Yakimovsky [1976], Prager, Hanson
and Riseman [1976]).
There are nowonly twice as many possible edges as pixels (Figure 5b)

compared to four times as many before (Figure 5a). However, we will

view these edges quite differently. The results presented in earlier

sections allowed the four types of edges about a pixel to compete, with only

E: the strongest surviving. Figure 5(c) demonstrates why we do not wish
" to allow the horizontal and vertical edge around a point to be mutually
L exclusive--they both should be present for diagonal boundaries.l

‘7 This leads us to viewing each horizontal and each vertical edge

t; in our current representation as a distinct element a; in the set of

i

: .

1Note that now higher level processes will be required to detect the global
characteristics of a straight line at some orientation other than horizontal
or vertical.
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elements A. For each element there are only two labels to be associated
with it, EDGE and NO-EDGE. Since the relaxation scheme that we have
described demands that the probabilities of the labels sum to one, we
have a situation which has simplified nicely, where only one probability,
P(EDGE), need be stored to represent the likelihood of the two labels.
Before discussing the compatability coefficients and the manner
in which the labels will be updated, we will adapt our differentiation
operator of Figure 3 to the new situation. Figure 5(d) demonstrates
the computation of the strength S(Ei) of an edge Ei (in this case vertical)
as the max of the output of the two masks which were associated with putting
an edge in the given position. Now let us utilize the strength of the
globally strongest edge in the image

SMAX = max S(Ei)
Ei(image
to convert each S(Ei) into the probability of EDGE (and consequently determining
the probability of NOEDGE) at location i by
E

P(Ei) = Mi;
Thus, the probability of an edge will approach 1 only at the strongest
edges in the image.

Only the specification of the compatability functions remain. We
must define rij: A x AN —> [-1,1] tocause suppression of redundant lines
and strengthening of weak or incorrect lines. Generally these are intui-
tively specified as heuristic weights. Let us consider the typesof weights on

the neighborhood of surrounding labels which should influence the likeli-

hood of a horizontal label.
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Figure 5: An inter-pixel edge representation for relaxation.
(a) Competing orientations of an edge for each pixel in
the previous representation. (b) Both horizontal and vertical

edges about a pixel will be allowed in the new representation.

(¢c) For complete diagonal boundaries both horizontal and verti-

cal edges at a pixel are required. (d) Modified edge operator

| is maximum strength of the two placements of masks. (e) The
labels in the neighborhood of a horizontal edge which might

be used to update the probability of a horizontal edge;

note that the null label is depicted by [l
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The labels shown in Figure 5(e) are the only labels that will be
allowed to affect the probability of the horizontal label in the center of a
3 x 3 window. Horizontal edges "a" to the left and right of a horizontal
label represent the continuation of a horizontal line and should support
the 1likelihood of that label by a positive coefficient; the null label
"b'" left and right should have a negative weight because the edge doesn't
continue. Vertical edges ''¢'" should have positive weights since they
represent a consistent extension of a horizontal edge. Horizontal edges
above and below 'd" call for suppression--hence a negative weight. Finally,

the presence of a null label "e" above or below a horizontal edge might be

= +.3) of that horizontal label

considered as supporting evidence (rij

and would be positive. The size of the weights employed represent one's
heuristic estimate of the relative compatability of the label of point j
on the horizontal label of point i. Specification of the vertical label
can be derived by symmetry (a 90° rotation followed by a mirror image
transformation).

The correlations for updating the null label can be heuristically

specified in a similar fashion but it is difficult to specify as a set of
linearly independent contributions.l We will address this question again
shortly. Here, an rii = 0 on all points will cause the probability of the

null label to vary inversely with positive or negative changes in the evidence

1Noto that Zucker, Hummel & Rosenfeld [1975] deal with the null label by
setting up a competing null label process. However, the desirable
weights are only clear in areas where there is no evidence of strong

edges anywhere in the local context. Thus, if multiple edges for a single
boundary are allowed, the null label probabilities only need to grow in
areas without edges. 1If one is trying to carefully refine the presence

of a boundary to a single thinned edge representation, the features for
increasing the probability of the null label cannot easily be expressed as a
set of weights for a linear function.
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of an edge. Thus, we have the means of computing a change in the proba-
bilities of the horizontal or vertical labels based on the surrounding
context, and by renormalizing obtain new probabilities of these edges.

Figure 6 are results of examples with different compatability co-
efficients and show various problems with the process as it has been
formulated in this paper. In order to avoid a strong edge from being
overwhelmed by the combined effect of a pair of weaker parallel edges to
either side, reduction of.strength of non-maxima edges by some factor k
(in our example k = 2) will be applied prior to beginning the relaxation
process; i.e., all edges parallel and adjacent to a stronger edge will
be reduced. Figure 6(a) shows the resultant vertical and horizontal
probabilities and an edge image with all edges with probability lower
than .2 removed. It is clear that there are incorrect edges whose pro-
bability must be lowered while many vertical edges in the diagonal boundary
siwuld be increased.

Figure b6(b) shows an example set of coefficients and the results
after 1 iteration, while 6(c¢) shows results after 6 iterations. The
information cleans up with most ot the vertical spurs hanging off the
diagonal boundary in 6(a) being rapidly reduced. However, the major
diagonal boundaries are missing key vertical edges whose probability has
also been reduced. In addition the upper right diagonal boundary started
with lower probability edges and they are in the process of disintegrating.
In order to combat these effects, the size of some of the positive weights
are increased in the example of Figure 6(d). The probabilities of edges

after 6 iterations show many spurious edges growing stronger while parts

of the weaker boundary still disappear.




Figure 6:

(a) The initial probabilities of vertical and horizontal edges,
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The relaxation process for boundary formation.

and the location of edges with probability > .2. (b) An example

set of weights and the probabilities after one iteration. (c¢) Shows
probabilities after 6 iteratjons. (d) A set of coefficients which
tend to grow more lines, and the results after 6 iterations.

(e) The addition of a feature which is a non-linear function of a

set of points in the neighborhood, and the results after 6 iterationms.
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It is difficult to balance the effects of keeping the vertical edges
in the diagonal boundary and the suppression of growth of spurious edges.

H Much of this problem is due to the limitations of using a function in which

the points contribute in a linearly independent manner. Figure 6(e)
shows the use of one additional factor, the probability that an edge is
unconnected. For a given edge to be a part of a continuing boundary,
there should be at least one high probability edge emanating from each
end of our given edge. 1If the three possible edges from each side are

alle
called e ez, e3 and €4

1’ <

50 86, respectively, then

P(unconnected edge) = 1 - MAX[P(el),P(ez),P(eB)]*MAX{P(eA),P(e5),P(eb)].

If this probability is associated with a negative weight, it will keep

spurious lines from growing off a strong edge into areas where there are
only low probability edges. However, this factor is a non-linear function of the

probability of six labels and is an extension of the theory as presented.

The result of using this negative contribution is shown in Figure 6(e). !
Now larger positive weights on other coefficients can be used. The results
after 6 iterations show the desired effect with all edges in the major
boundary growing stronger. However, the other diagonal boundary dis-
appears because weak points within it caused it to appear disconnected
and it broke up.

If the relaxation process is to just carry out gross strengthening
of boundaries without worry about producing thick lines with multiple
edges, it probably can be used quite reliably. However, if the goal is
refined edges as we have been seeking here, then it appears that contribu-
tions from independent labels will be quite difficult to tune and contri-
butions from sets of labels will probably be required. This area will

be left for future research.
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4.5 Grouping Edges into Line Segments

The problems have not been exhausted. Although theresults in Figure
6 appear to be good segmentations at a macro-level, upon close examina-
tion there may still be incomplete boundaries, textural edges, and noise points.
If local edges which are a part of a common boundary are to be grouped

into distinct line segments, then some criterion of similarity is needed.

Certainly orientation is important when straighf lines are being tracked,
‘ut in the general case this characteristic cannot be relied upon. If

a palr of edges are of approximately equal strength, it is a strong cue

that the edges should be joined. However, the regions surrounding any
given region are bound to have different properties. Therefore, no matter
upon what feature the strength of the gradient is based, one must expect
widely varying values as the boundary of a single region is tracked.

Figure 7a depicts three regions with the edge strength based upon intensity:

the strength of two line segments SAB and SAC bounding region RA are quite

different.

.

This problem calls for the goal of forming line segments each of which
lies between only one pair of regions. Then, one can expect local edges
to exhibit characteristics which have less variance. In addition, the
comparison of features of the regions to either side of a pair of adja-
cent edges, Figure 7b, can be very useful in directing the edge binding

process [Perkins [1976]). Notice that S and S

B( A(

properties of R in common, but differing properties on their other sides
L)

(RA vs. Rq) leads to opposite signs on the direction of the gradient. The

similarity of two edges El and 1, can now be based upon much more complete

information, a comparison of (Fxl. sz) and (Fyl. Fy.,) as well as Sl and SZ'
&

Thus, SAC and SBF can be detected as distinct segments vet retain information

that they bound a common region.

L-."-..-'---lllll-IlIIlIll------............_. . LD oy v T

.which are equal in strength have the




Figure 7:

}2a

Use of region information in the grouping of edges.

(a) Three adjacent regions Rq, with associated intensities

I“, « = A,B,C, produce edge strengths SAB’ SAC’ and SBC'

(b) The features to either side of a pair of edges can be

used to group the edges into boundary segments. (c) Edges

are grouped and segments of boundaries are symbolically labelled
with distinct numerical symbols. (d) Segments obtained across

the entire image. (e) The remaining long segments after

thresholding by length.
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Typical results of grouping edges (Prager, Hanson & Riseman [1976]) are
shown in Figure 7c. Distinct numeric labels are used to denote edges which
are part of a common boundary. Note the places where a local variation caused
a boundary to be divided into subparts. It is easy to join these back together
by comparing the global average values of each segment (when there is not a
vertex involving more than 2 segments). Then small variations will have
little impact on long lines and context again allows decisions to be made
that otherwise would be quite difficult. The result binding of edges produce
the segments of Figure 7d; segments can be thresholded on the basis of
length to obtain the most reliable boundaries as in Figure 7e. Further
analysis of these procedures are available in Prager, Hanson and Riseman [1976].

[t should not be difficult to utilize region and boundary information
in an integrated manner within the relaxation process. The similarity
of the regions associated with contiguous edges might be a weighting
factor for the mutual support of the edges. This could be used to
limit the mutual development of edges to those that would be grouped into
a line and might prevent the aggregation of texture element edges into
a spurious line.

There are other problems that remain. The quantization of direction

by the Kirsch operator is quite crude. A straight line segment whose slope
is not a multiple of 45° increments might have local edges appearing as
shown in Figure 8a. One ié faced with grouping these edges into the slope
of the line (as a continuous parameter). Marr [1975] has considered

a similar problem which can be summarized by Figure 8b. The line to be
detected can be formed by grouping similar primitive elements, which could

be defined by the shape of the element or an edge of a certain orientation.
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Figure 8c points out that an abstract line can be perceived by grouping

‘ a set of places where each place is specified by an element (a line, endpoint,
or some other entity of arbitrary complexity) at some point in.space.
In addition, curves may have to be fit to any type of boundary; line or
curve descriptors need not be restiicted to the orientations of the detectors
of small segments All of these additional topics deserve careful treat-

ment but will not be considered any-further in this paper.
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Figure 8: Additional problems in boundary formation discussed by Marr [1975].
(a) The orientation of global lines may be different than the
orientation of the local edges being grouped. (b) Lines
formed by grouping similar primitive elements. (c) An abstract
line can be formed by grouping distinguished ‘places', in

this case the endpoints of other lines.
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3u.Region Formation
<

The two main approaches to region formation of natural scenes,
other than the indirect route of forming boundaries, are based on either
merging local éreas or splitting global areas, both eventually deter-
mining regions. In this section we will examine some of the fundamental
properties of the problem domain that have been utilized in a few specific
examples of re;ion formation. It is argued that most of this work has
focussed upon either local features and two-dimensional spatial properties
of the image or global features of the image, but that these different
types of information have not been fully integrated. By integrating the
types of feature activity in a scene with an analysis of their relative
spatial distributions, local region formation can proceed under the
guldance of a global analysis.

The discussion is complicated in some cases by the issues of semantic
guidance in'the region seémentation process. The lack of a global view
of region properties can be compensated for by providing (the probabilities
of) semantic labels to various regions, thereby allowing region merges
to be blocked or made more likely. However, there is some controversy
how and whether to bring semantics to the initial segmentation of a scene.
some of these questions will be considered in the approaches that use local
spatial analysis and semantic guidance to merge small regions.

Let us examine three approaches to region formation. Recent articles
(Zucker [1975], and Weiman [1976]) can provide the reader with additional
approaches. The three efforts focus upon different characteristics of

gcenes!:

34
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Local spatial examination of the scene — This involves the merging
of local areas under syntactic (comparison of visual features
of the areas) or semantic guidance; regions are built up from
sma%l pleces which have a high probability of entirely belonging
to a final goal region (Brice and Fenema [1970], Yakimovsky

and Feldman [1973], Tenenbaum and Weyl [1975], and Tenenbaum

and Barrow [1976], Barrow and Tenenbaum [1976]).

2) Global examination of feature distributions across the scene —

Here, peaks and clusters of activity in one-dimensional histo-
grams are used to threshold the scene and recursively split
the image; large pieces of the image are broken down into
smaller areas until there is a high confidence that they are

homogeneous under the features of interest (Ohlander [1975],

Tomita, Yachida and Tsuji [1973], Schachter, Davis and Rosenfeld
{1975]); and

Interfacing spatial analysis with feature analysis — Clusters

of activity in two-dimensional histograms are used to label
local areas of the scene, followed by a spatial analysis of

these labels to guide the formation of the desired regions

(Hanson, Riseman and Nagin [1975}).

IR

P L EOSERE,

5.1 Region Growing via Local Analysis
There has been a range of work on techniques for locally wmerging
areas. One can break any scene into 'atomic' areas by merging all ad-

jacent points (either 4-neighbor or 8-neighbnr adjacency) into the same

region 1f they differ in some property by less than a threshold €.

.

o " e i



These algorithms are usually programmed to sequentially add points adjacent
to a gi;én region or point{. If 6 equals 0, these areas are formed in

the most conservative manner possible (although even here because of problems
such as shadows one is not assured that these regions each lie entirely
within an area encompassed by a single object). With only a little
experience in region growing, it becomes obvious that there does not

exist any single threshold for region merging that is acceptable, even for
several different areas in a single scene.

Consider subimage B of Figure 1d which includes

on the right side an area of sky above the somewhat speckled roof, and

on the left side tree foliage (reflective highlights and shadows), as

well as sky or roof showing through in some places. Figure 9 shows the
results of region growing (using 4-neighbor adjace.cy) with two values

of 8; the conservative value does not grow the tree together but a small
increase (on a gray scale of 64 values) joins the roof to the tree. What
18 noise or textural variation in one area becomes a meaningful boundary
in another.’ Thus, dynamic setting of thresholds is needed in the different
areas, but that is a complex process to automate without global guidance
or a priori knowledge. It is always difficult to determine whether or not
a local discontinuity with respect to some feature(s) should bar further
tegiﬁn growth or should be bridged as an internal variation of the region

being formed. However, one meta-strategy 1s to form atomic areas far

. It is easy to formulate parallel region growing algorithms. In a

spatial array processor such as the processing cones (described in section
Y= 35 every image point can act as an initial 'seed' point and all
regions can grow simultaneously (with some being gobbled up by others).

o . bl o
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too conservatively and then seek additional means of merging these areas
(Brice & Fenema [1970]). This can be effective but it is very difficult
to avoid 9j}vincorrect local merges; a single 'leak' between regions might
cause very large changes in the final segmentation. Semantic constraints

nave been used to provide greater reliability.

Freuder [1976] provides an intersting variation to the region merging
process by grouping those regions which are relatively more similar to
each other than to other regions. This is continued and a tree of regions
is constructed up to a single repion over the scene. This whole structure
would be passed to a global semantic processor which must extract the
relevant information for different parts of the picture from nodes of
the tree at varying levels of grouping. Potentially, this can be a
powerful and flexible way to present information to semantic processes.
However, it seems that the tree should be greatly pruned prior to semantic

processing if it is to be useful. This leads to the difficult questions

concerning texture that remain to be solved if this is to be a viable

approach.




Figure 9: A simple region grower, where regions are represented by a
unique symbolic label (mod 99).

(a) Regions growing on intensity values of subimage B with

8 = 3. (b) Regions grown with 8 = 5.
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'SLJ_ Merging Regions Under Semantic Cuidance

The focus of this paper has been upon techniques that can be applied
independently of the semantic context in which the computer vision system
is operating. In many systems stored m<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>